3.4.45 \(\int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [345]

3.4.45.1 Optimal result
3.4.45.2 Mathematica [A] (verified)
3.4.45.3 Rubi [A] (verified)
3.4.45.4 Maple [A] (verified)
3.4.45.5 Fricas [A] (verification not implemented)
3.4.45.6 Sympy [F]
3.4.45.7 Maxima [B] (verification not implemented)
3.4.45.8 Giac [F]
3.4.45.9 Mupad [F(-1)]

3.4.45.1 Optimal result

Integrand size = 25, antiderivative size = 136 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {3 \sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \]

output
1/2*a*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+3/4*a*sin(d*x+c 
)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+3/4*arcsin(sin(d*x+c)*a^(1/2)/ 
(a+a*cos(d*x+c))^(1/2))*a^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.4.45.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.82 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\cos (c+d x)} \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (3 \sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} \left (2 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{8 d} \]

input
Integrate[Sqrt[a + a*Cos[c + d*x]]/Sec[c + d*x]^(3/2),x]
 
output
(Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c 
 + d*x]]*(3*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*x] 
]*(2*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(8*d)
 
3.4.45.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4710, 3042, 3249, 3042, 3249, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \cos (c+d x)+a}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx\)

\(\Big \downarrow \) 3249

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{4} \int \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{4} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3249

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{4} \left (\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{4} \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

input
Int[Sqrt[a + a*Cos[c + d*x]]/Sec[c + d*x]^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((a*Cos[c + d*x]^(3/2)*Sin[c + d*x]) 
/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (3*((Sqrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x 
])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*S 
qrt[a + a*Cos[c + d*x]])))/4)
 

3.4.45.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3249
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[2*n*((b*c + a*d)/(b*( 
2*n + 1)))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 
0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
3.4.45.4 Maple [A] (verified)

Time = 14.20 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.07

method result size
default \(\frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (2 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \sec \left (d x +c \right ) \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(145\)

input
int((a+cos(d*x+c)*a)^(1/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(3/2)/(cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*(2*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*t 
an(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*sec(d*x+c)*arctan(tan(d*x+c) 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))
 
3.4.45.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.79 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {3 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {a \cos \left (d x + c\right ) + a} {\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate((a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")
 
output
-1/4*(3*sqrt(a)*(cos(d*x + c) + 1)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(co 
s(d*x + c))/(sqrt(a)*sin(d*x + c))) - sqrt(a*cos(d*x + c) + a)*(2*cos(d*x 
+ c)^2 + 3*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) 
+ d)
 
3.4.45.6 Sympy [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+a*cos(d*x+c))**(1/2)/sec(d*x+c)**(3/2),x)
 
output
Integral(sqrt(a*(cos(c + d*x) + 1))/sec(c + d*x)**(3/2), x)
 
3.4.45.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1059 vs. \(2 (112) = 224\).

Time = 0.43 (sec) , antiderivative size = 1059, normalized size of antiderivative = 7.79 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")
 
output
1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 
2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c))) + sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(arctan2((cos(2*d*x + 2*c)^2 + 
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*s 
in(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) 
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos 
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos( 
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2* 
d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))),...
 
3.4.45.8 Giac [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {a \cos \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(a*cos(d*x + c) + a)/sec(d*x + c)^(3/2), x)
 
3.4.45.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((a + a*cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(3/2),x)
 
output
int((a + a*cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(3/2), x)